Top.Mail.Ru

Водородные соединения: гидриды и их свойства

H2 — это элемент IА-группы, порядковый № 1. Заряд атомного ядра +1, потому что в ядре 1 протон. Вокруг ядра вращается всего 1 электрон. До завершения уровня атому не хватает 1 электрона. Завершать энергетический уровень атом водорода может различными способами: образовывать летучие водородные соединения и гидриды.

Гидриды

Способы завершения энергетического уровня

Водород — один из немногих химических элементов, который может иметь как положительную, так и отрицательную степень окисления в соединениях. Как, например, бром ( NaBr -1, Br +1 2O ) и хлор ( NaCl -1, HClO3+5):

Химия

  1. Может принимать на внешний уровень один недостающий электрон – атом водорода превращается в ион, заряженный отрицательно. Такая реакция происходит при взаимодействии с металлами, которые в соединениях проявляют только положительную степень окисления. Степень окисления водорода будет равна -1, так как заряд отрицательный. Металлы с H2 создают соединения, которые называются гидридами. Способствует их образованию H2 с самыми активными металлами: щелочными и щелочноземельными. Например: NaH (гидрид натрия), CaH2 (гидрид кальция), LiH (гидрид лития), CuH (гидрид меди).
  2. Может отдавать один электрон со своего внешнего энергетического уровня — остается только ядро атома водорода, состоящее из протона. Таким образом, H2 образует химические соединения с неметаллами, которые при этом будут проявлять только отрицательную степень окисления. В соединениях с водородом степень окисления неметалла будет низшая. В этом случае водород становится частицей с положительным зарядом иона или степенью окисления +1. Соединения H2 с неметаллами называют летучие водородные соединения. Например: HCl (соляная кислота/хлороводород), NH3 (водородное соединение азота — аммиак), NH4OH (нашатырный спирт), NaHS (гидросульфид натрия).

Помимо способов завершения энергетического уровня, существует классификация гидридов, в соответствии с их характером связи. Они подразделяются на 3 большие группы.

Типы гидридов

Стоит рассмотреть основные группы, поскольку побочные группы (полимерные, интерметаллические и комплексные) являются подвидами основных, а также имеют схожие с ними физические и химические свойства.

Ионные гидриды

Ионные (солеобразные) — соединения H2 с металлами IA и IIA (кроме магния), а также с алюминием. Их главное отличие от двух других видов в том, что они активно реагируют с H2O с образованием щёлочи и выделением H2 в виде газа. Самым ярким представителем ионных гидридов является гидрид натрия.

Что такое гидриды

Физические свойства: белые твёр­дые ве­ще­ст­ва с кри­стал­лической ре­шёт­кой, со­дер­жа­щей ка­ти­он (плюс) ме­тал­ла и гид­рид-ани­он (минус) Н–. Проводят электрический ток. Устойчивы при нормальных условиях (н.у.).

Как и любое вещество (химический элемент, простое вещество или химическое соединение), ионные гидриды обладают свойствами. Они проявляются в процессе реакции и влияют на неё. Химические свойства:

  1. Разлагаются при нагревании еще до достижения своей температуры плавления: CaH2 = Ca + H2↑.
  2. При растирании на воздухе воспламеняются: CaH2 + O2 = CaO + H2O.
  3. Реагирует с водой с образованием щелочи и выделением водорода: 2NaH + H2O = 2NaOH + H2↑.
  4. Являются сильными восстановителями (при t 700-800°С восстанавливают оксиды до металлов), но их использование в лаборатории осложнено, поскольку они с легкостью реагируют с кислородом и влагой воздуха.

Применение: для по­лу­че­ния ме­тал­лов из их ок­си­дов, уда­ле­ния ока­ли­ны с по­верх­но­сти металлических из­де­лий, как ра­кет­ное то­п­ли­во.

Получение: при взаимодействии металлов с водородом при t 200-600°С:

  • H2 + 2Na = (300°C) 2NaH;
  • H2 + Ca = (600°C) CaH2.

Ковалентные соединения

Ковалентные — гидриды, образованные неметаллами IV, V, VI и VII групп, а также бором. Например, гидрид углерода/метан CH4, силан SiH4, гидрид серы/сероводород H2S.

Физические свойства: газообразные, легко воспламеняются на воздухе.

Ковалентные гидриды во многом отличаются от ионных и металлических. Если последние обладают химическими свойствами, схожими с металлами, то свойства ковалентных следует рассмотреть подробнее. Химические свойства:

  1. При высоких температурах разлагаются практически необратимо: H2S = (около 400°С) S + H2.
  2. Сильные восстановители.
  3. Высокая токсичность.
  4. B2H6 и SiH4 разлагаются водой с выделением водорода: B2H6 + 6H2O → 2H3BO3 + 6H2.
  5. Гидриды элементов V-VII групп не разлагаются водой.

Применение: для получения полупроводниковых пленочных покрытий, защитных покрытий на поверхности металлов.

Получение: термическое разложение, восстановление галогенидов.

Существуют многочисленные производные ковалентных гидридов, в которых часть атомов H2 замещена атомами галогенов или металлов.

Магний по своим свойствам и химической связи располагается между ионными и ковалентными гидридами. С водой и водными растворами MgH2 реагирует с выделением H2, но не так энергично, как ионные гидриды.

Соединения железа с водородом крайней неустойчивы и в чистом виде не обнаружены. Формула неустойчивого гидрида железа выглядит так: C5H5Fe.

Водородные соединения: гидриды

Металлические соединения

Металлические — соединения переходных металлов. Фактически они являются твёрдым раствором H2 в металле, атомы водорода помещаются в кристаллическую решётку металла. Их образованию всегда способствует адсорбция водорода на поверхности металла.

Физические свойства: пред­став­ля­ют со­бой кри­стал­лические ве­ще­ст­ва с металлическим бле­ском. Обладают интенсивной окраской, проявляют металлические или полупроводниковые свойства. Устойчивы на воздухе. С кислородом и водой реагируют медленно. Магнитными, механическими, тепло- и электропроводными свойствами схожи с металлами.

Химическая связь очень прочная.

Применение: применяются в качестве источников водорода особой чистоты (который используется в топливных элементах), также для удаления водорода из газовых смесей.

Получение: реакция металла с водородом при обычной температуре или при нагревании: Ti + H2 = (150-200°С) TiH2.

При взаи­мо­дей­ст­вии H2 с ин­тер­ме­тал­лическими со­еди­не­ния­ми, такими как TiFe, LaNi5, мож­но по­лу­чить гидриды ин­тер­ме­тал­ли­дов TiFeH2, LaNi5H6, ко­то­рые с вы­со­кой ско­ро­стью об­ра­ти­мо по­гло­ща­ют во­до­род при ат­мо­сфер­ном дав­ле­нии.

Гидриды химия

 

В прикрепленных таблицах указано содержание водорода, температура разложения, плотность и пр., что поможет в более глубоком понимании физических свойств водорода разных типов гидридов.

Особенности водородных соединений

Как и в любом разделе химии, водородные соединения имеют свои исключения. В их числе He, Ne, Ar, Kr, Pm, Os, Ir, Rn, Fr и Ra. Они не образуют бинарные соединения с водородом.

Информация, изложенная выше доказывает то, что химия интереснейший и увлекательный предмет, который стоит потраченного внимания и времени.

Нет комментариев

Добавить комментарий

Спасибо! Ваш комментарий появится после проверки.
Это интересно
Adblock
detector