Top.Mail.Ru

Формула и свойства диагоналей прямоугольного параллелепипеда

Одной из самых распространённых фигур в геометрии является прямоугольный параллелепипед. Формула его диагонали позволяет найти различные параметры объекта из-за своих замечательных свойств. Знать, что она представляет, необходимо не только для решения задач, связанных с многогранником, но и для успешного изучения стереометрии. Поэтому важно не только запомнить теоремы и формулы, дающиеся учителем в шестом классе средней школы, но и уметь применять знания.

Диагональ прямоугольного параллелепипеда

Общие сведения

В математике существует раздел, который называют стереометрией. Это наука, изучающая свойства фигур в пространстве. Геометрические объёмные тела состоят из точек, прямых и плоскостей. В зависимости от их взаимного расположения формируется та или иная фигура. Основным телом в стереометрии является многогранник — поверхность, состоящая из определённого числа многоугольников.

Параллелепипед

По сути, параллелепипед — это фигура, состоящая из шести прямоугольников. Его часто называют шестигранником. Образовывается он путём пересечения трёх пар плоскостей параллельных друг другу. Стороны, формирующие параллелепипед, называют гранями, а точки ограничивающие отрезки — вершинами. Таким образом, многогранник имеет шесть сторон и восемь вершин.

Прямоугольный объект отличается тем, что все углы в нём равняются девяносто градусов, а в основании лежит прямоугольник. Одной вершине прямоугольного многогранника сразу принадлежит три ребра. В литературе их часто называют измерениями. Правильным многогранником называют тот, у которого длины двух граней-измерений равны.

Фигура отличается следующим:

  • стороны, располагающиеся напротив друг друга, не только равны, но и параллельны;
  • линии, соединяющие по диагонали вершины пересекаются в одной точке делящую их пополам;
  • квадрат диагонали можно найти как сумму трёх измерений — высоты, длины и ширины;
  • если основания представляют собой квадрат, то фигуру называю кубом.

Объём прямоугольного объекта

Кроме этого, объём прямоугольного объекта можно найти, перемножив три размерности фигуры. Если стороны основания обозначить как a и b, а высоту c, то формула для вычисления будет выглядеть как V = a * b * c. В частном случае объём для куба вычисляют по упрощённой формуле: V = a3. Отсюда следует, что площадь боковой поверхности равняется: S = 2ab + 2bc + 2ac.

В параллелепипед можно вписать тетраэдр. Его объём будет составлять третью часть от размера основного геометрического тела. Из типовых предметов с формой параллелепипеда в качестве примера можно привести спичечный коробок, кирпич, упаковочную почтовую коробку.

Диагонали параллелепипеда

Пусть имеются две параллельные поверхности АВС и А1B1C1. Плоскость АА1В1 пересекается с ними соответственно по линиям АВ и А1В1. Учитывая свойства параллельных площадей, можно утверждать, что прямые АВ и А1B1 будут параллельными. А так как и отрезки АА1 и ВВ1 параллельны по условию, то АВВ1А1 параллелограмм. Значит, все грани параллелепипеда — параллелограммы.

Если взять параллелепипед построенный на двух параллелограммах ABCD и А1B1C1D1 расположенных в параллельных плоскостях и соединить их вершины A1C, D1B, можно заметить, что отрезки являются диагоналями как четырёхугольника A1D1CB, так и параллелепипеда.

В четырёхугольной фигуре замкнутые линии A1D1 и BC параллельны и равны, отсюда следует — A1D1CB параллелограмм (по признаку параллелограмма). Значит, так как в четырёхугольной фигуре на плоскости диагонали пересекаются в одной точке, при этом делятся ею пополам, то и все диагонали параллелепипеда А1С1, С1А и D1В, DB1 будут пересекаться в этой точке.

Диагонали параллелепипеда

Доказательство можно построить и следующим образом. Для любой пары противолежащих граней фигуры справедливо, что их соответствующие углы будут одинаковы, а значит A1ADD1 = B1BCC1 и их плоскости параллельны. Учитывая параллельность отрезков AB — DC и D1C1 — DC, верно будет утверждать, что AB не пересекает D1C1.

Если между AB и D1C1 провести плоскость, то AD и BC будут параллельны друг другу. Отрезки AC1 и BD1, так как являются диагоналями параллелепипеда, должны в ней делиться пополам. Для примера можно рассмотреть диагональ AC1 и A1C. Они будут диагоналями параллелограмма AA1C1C. Поэтому A1C пересекает AC1 в середине. Значит, три диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам. По аналогии можно привести доказательство и для четвёртого отрезка B1D.

Таким образом, можно сформулировать три свойства диагоналей в параллелепипеде:

  1. В прямоугольном многоугольнике они пересекаются в одной точке.
  2. Диагонали не могут быть параллельными, но при этом равны друг другу.
  3. Найти диагональ в прямоугольном параллелепипеде можно по формуле: d = √(a² + b² + c²).

Зная эти свойства, можно приступать к решению задач. При этом стоит знать и сколько диагоналей у параллелепипеда — всего их четыре, а не шестнадцать, как думают, некоторые, прибавляя к четырём диагонали прямоугольников, формирующих объёмную фигуру.

Решение задач

В школе ученикам после рассмотрения теоретического материала учитель обычно предлагает для закрепления знаний решить несколько задач. Самостоятельное решение позволяет усвоить тему и научится применять теорию на практике. Существует набор типовых примеров, решив которые, школьник может переходить к следующим темам. Вот некоторые из них, часто попадающиеся в контрольных работах и тестах:

Решение задач

  1. Найти, у какого прямоугольника объём будет больше, если три измерения первого равны: 1, 2, 2, а диагональ второго составляет семь единиц. Так как большая фигура будет иметь длиннее диагональ, то нужно вычислить её значение у первой фигуры и выполнить сравнение. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений, то есть d 2 = √ 12 + 22 + 22 = √9 = 3 единицам. Значит, объём первой фигуры будет меньше чем второй на четыре единицы.
  2. В прямоугольном параллелепипеде грань AA1 равняется 150 сантиметров, а отрезок AB = 2√9 метров. Найти диагональ фигуры. В первую очередь необходимо выбрать размерность, так как длины даны в сантиметрах и метрах. Для удобства вычислений можно взять метры. Фигура прямоугольная, значит, грани являются прямоугольниками. Отсюда следует, что обе диагонали одинаковые. Поэтому можно составить равенство: A1D = AD1. Вписанный треугольник A1B1D имеет прямые углы, так как ребро A1B1 перпендикулярно стороне AA1D1D. Опираясь на теорему Пифагора, можно сказать, что гипотенуза B1D, являющаяся диагональю, равна: B1D = √A1B12 + A1D2 = √1,52 + (2√9)2 = √2,25 + 6 = 2,87 метра.
  3. Пусть в прямоугольном многограннике два отрезка у основания равны двум и трём сантиметрам, а высота фигуры составляет шесть сантиметров. Найти диагональ. Для удобства можно принять, что AB = 2, AD = 3, AA1 = 6. В прямоугольнике диагональ основания будет равняться BD. Учитывая теорему Пифагора и то, что угол A равняется девяносто градусов, можно составить равенство: BD2 = AB2 + AD2. В треугольнике BB1D, у которого угол B составляет также девяносто градусов, диагональ будет равна сумме квадратов: B1D2 = BD2+BB12. Выполнив подстановку BD2 из первого равенства во второе, можно получить искомое выражение: B1D2 = AB2 + AD2 + BB12 = 22 + 32 + 62 = 49. Значит, длина диагонали в параллелепипеде равна: B1D = √49 = 7 сантиметрам.

Использование онлайн-калькулятора

Конечно же, на обычном калькуляторе не зная формул и свойств прямоугольного параллелепипеда ответ, даже на простую задачу, найти невозможно. Но решить практически любой сложности задание можно на так называемых онлайн-расчётчиках или используя математический онлайн калькулятор.

Использование онлайн-калькулятора

По сути, это интернет-сайты, предлагающие пользователям бесплатно воспользоваться услугами по вычислению различных геометрических величин. Для того чтобы их использовать, нужно иметь лишь подключение к интернету и любой гаджет, поддерживающий работу с веб-обозревателем.

Пользователю, загрузившему сайт с онлайн-калькулятором, можно даже не знать формулы и вообще не понимать, что собой представляет геометрическая фигура. Всё что от него требуется, так это внимательно вести в специальную форму условия задачи и нажать кнопку вычислить. Конечно же, такое решение нельзя назвать самостоятельным. Но использование сайтов подходит идеально для проверки полученного результата или выявления ошибок в расчёте.

Тем более, кроме непосредственно автоматического вычисления диагонали объёмного многогранника большинство сервисов содержат на своих страницах краткую теорию, а также примеры с подробным решением типовых заданий.

Из существующих сервисов можно выделить:

Онлайн калькулятор Planetcalc

  1. Geleot. Калькулятор-справочник. Все математические разделы снабжены интерактивными калькуляторами, которые позволяют быстро и в автоматическом режиме проводить расчёты.
  2. Allcalc. Кроме, стандартного доступа через веб-страницу, сайт предлагает своим пользователям скачать приложение для Android OS. На проекте присутствуют авторские калькуляторы с таких сайтов как 4×4.lviv, Papaimama, V-stroim и многих других.
  3. Planetcalc. Особенность сайта в том, что для пользователей доступно написание комментариев под любым калькулятором. Это даёт возможность не только совершенствовать процесс, но и обмениваться опытом.
  4. Infofaq. На своих страницах содержит довольно подробные теоретические выкладки. На сайте в простой и доступной форме даны общие понятия и выложены основные формулы.

Приведённые онлайн-калькуляторы предлагают универсальные способы решения задач. Они дают возможность разобраться в вычислении примеров и заданий, хорошо закрепить пройденный материал и в дальнейшем без труда справляться не только с домашними, но и контрольными заданиями.

Нет комментариев

Добавить комментарий

Спасибо! Ваш комментарий появится после проверки.
Это интересно
Adblock
detector