Top.Mail.Ru

Формула для нахождения диагонали прямоугольника и важные свойства

При решении задач по физико-математическим дисциплинам иногда необходимо найти диагонали прямоугольника. Формула в интернете не всегда является достоверной. Очень важно на начальных стадиях вычислений правильно идентифицировать фигуру, чтобы применить к ней нужные свойства и соотношения. Специалисты рекомендуют не приступать сразу к практике, а разобраться с теорией.

Диагональ прямоугольника формула

Общая информация

Прямоугольник — геометрическая плоская фигура, состоящая из четырех попарно параллельных сторон, между которыми образованы прямые углы. Ее можно перепутать с квадратом, имеющим похожие свойства и тождества. При решении задачи очень важно правильно найти фигуру, имеющую определенные признаки определения. Некоторые учащиеся путают последние со свойствами. Эти два термина отличаются между собой.

Методика идентификации

Признак — совокупность некоторых критериев, позволяющих правильно различать фигуры. Прямоугольник возможно идентифицировать по таким правилам:

Как найти диагональ в прямоугольнике

  1. Неравенство сторон, являющихся смежными.
  2. Диагонали при пересечении не образуют угол в 90 градусов.
  3. Диагонали не являются биссектрисами углов больших треугольников, полученных при пересечении.
  4. Окружность можно только описать, а не вписать.

Если для искомой фигуры применим хотя бы один из признаков, то ее возможно классифицировать как прямоугольник.

После успешной идентификации необходимо перейти к рассмотрению свойств, которые рекомендовано специалистами использовать при расчетах параметров и доказательстве утверждений (тождеств и теорем).

Важные свойства

Свойства — набор или список утверждений и тождеств, используемых при вычислениях требуемых величин, а также для доказательства теорем, а именно:

 диагональ прямоугольника равна

  1. Все углы прямые, а их алгебраическая сумма равна 360.
  2. Несмежные стороны параллельны и равны.
  3. Точка пересечения диагоналей — центр симметрии и делит их на две части. Кроме того, средняя линия проходит через нее.
  4. Формула диагонали (m) прямоугольника через стороны p и t: m=(рp+tt]^1/2), т. е. квадратичное значение диагонали равно сумме сторон, каждая из которых умножена на эквивалентное значение.
  5. Подобность малого и большого треугольников, образованных диагоналями.
  6. Существует только описанная окружность, диаметр которой эквивалентен диагонали прямоугольника.
  7. При проведении диагонали образуются два равных треугольника, являющиеся прямоугольными.

Следует отметить, что вышеописанные свойства — это требуемый минимум, которого недостаточно для выполнения вычислений и доказательства других тождеств.

Формулы и соотношения

Чтобы ориентироваться в формулах, нужно ввести некоторые обозначения. К ним принадлежат следующие:

Как найти диагональ прямоугольника

  1. Диагональ — m.
  2. Стороны — k и l.
  3. Периметр — P.
  4. Полупериметр — р.
  5. Площадь — S.
  6. Острый угол, который образуют две диагонали — Z, а тупой — Y.
  7. Диаметр — D.

После этого необходимо рассмотреть основные тождества. Их рекомендуется применять при вычислениях различных параметров фигуры.

К ним относятся такие выражения:

  1. Периметр: P=2S/к + (2/к)k 2 =2k+2(m 2 -k 2 )^(1/2))=2k+2(D 2 -k 2 )^(1/2)).
  2. Площадь: S=[Pк — 2к 2 ]/2=[Pl — 2l 2 ]/2=k[m 2 -k 2 ]=[sin(Z)/2]m^2 .
  3. Диагонали: m=[k 2 +l 2 ]^(1/2)=(1/k)(S 2 +k 4 )^(1/2).

Кроме того, найти диагональ прямоугольника возможно, используя формулу такого вида: m=((2k+2l) 2 -4(2k(k+l)+8k 2 )^(1/2) * 0,5. Величины «(2k+2l)» можно заменить периметром Р, когда он известен.

Следует отметить, что найти длину диагонали прямоугольника возможно при известном D. Соотношение имеет следующий вид: m=2R=D.

Пример расчета параметров

У прямоугольника известна диагональ (m=10) и периметр (Р=28). Необходимо узнать длину его сторон. Решать задачу нужно по такому алгоритму:

Диагональ прямоугольника

  1. Диагональ находится по следующему выражению: m^2=k^2+l^2.
  2. Формула для вычисления периметра: P=2(k+l).
  3. Составить систему уравнений для нахождения сторон: 100=k^2+l^2 и 28=2(k+l).
  4. Выразить из второго уравнения одну из сторон: k=14-l.
  5. Подставить в первое: (14-l)^2+l^2=100.
  6. Раскрыть скобки: 196-28l+l^2+l^2=2l^2-28l+196=100.
  7. Уравнение имеет такой вид: l^2-14l+48=0.
  8. Вычислить его корни: l1=6 и l2=8.
  9. Подставить в четвертый пункт и посчитать стороны: l=6 и к=8.

Следует отметить, что расчет корней производится подстановкой, при которой возникают дубли решений. Среди них требуется выбрать любых две пары. Исходя из девятого пункта, можно рассчитать значение площади, зная две стороны. Используя формулы, можно находить и другие параметры. Например, высчитать значение острого угла.

Таким образом, перед решением задач по геометрии математики рекомендуют правильно идентифицировать геометрическую фигуру при помощи признаков, а затем использовать какие-либо соотношения.

Нет комментариев

Добавить комментарий

Спасибо! Ваш комментарий появится после проверки.
Это интересно
Adblock
detector